
June 2006 95

S O F T W A R E T E C H N O L O G I E S

Adhering to a set of 10 verifiable
coding rules can make the analysis
of critical software components
more reliable.

M ost serious software
development projects use
coding guidelines. These
guidelines are meant to
define the ground rules

for the software to be written: how it
should be structured and which lan-
guage features should and should not
be used. Curiously, there is little con-
sensus on what a good coding stan-
dard is.

Among the many coding guidelines
that have been written, there are
remarkably few patterns to discern,
except that each new document tends
to be longer than the one before it. The
result is that most existing guidelines
contain well over 100 rules, sometimes
with questionable justification. Some
rules, especially those that try to stip-
ulate the use of white space in pro-
grams, might have been introduced by
personal preference; others are meant
to prevent very specific and unlikely
types of errors from earlier coding
efforts within the same organization.

Not surprisingly, the existing cod-
ing guidelines tend to have little effect
on what developers actually do when
they write code. The most dooming
aspect of many of the guidelines is that
they rarely allow for comprehensive
tool-based compliance checks. Tool-
based checks are important because
manually reviewing the hundreds of
thousands of lines of code that are
written for larger applications is often
infeasible.

Existing coding guidelines therefore
offer limited benefit, even for critical
applications. A verifiable set of well-
chosen coding rules could, however,
assist in analyzing critical software
components for properties that go
well beyond compliance with the set
of rules itself. To be effective, though,
the set of rules must be small, and it
must be clear enough that users can
easily understand and remember it. In
addition, the rules must be specific
enough that users can check them
thoroughly and mechanically.

To put an upper bound on the num-
ber of rules, I will argue that restrict-
ing the set to no more than 10 rules
will provide an effective guideline.
Although such a small set of rules can-
not be all-encompassing, following it
can achieve measurable effects on soft-
ware reliability and verifiability.

To support strong checking, the
rules I will propose are somewhat
strict—some might even say dracon-
ian. The tradeoff, though, should be
clear. When it really counts, especially
in the development of safety-critical
code, working within stricter limits can
be worth the extra effort. In return, it
should be possible to demonstrate
more convincingly that critical soft-
ware will work as intended.

SAFETY-CRITICAL
CODING RULES

The choice of language for safety-
critical code is in itself a key consider-
ation. At many organizations, JPL
included, developers write most code
in C. With its long history, there is
extensive tool support for this lan-
guage, including strong source code
analyzers, logic model extractors, met-
rics tools, debuggers, test-support
tools, and a choice of mature, stable
compilers. For this reason, C is also
the target of the majority of existing
coding guidelines. For fairly pragmatic
reasons, then, the following 10 rules
primarily target C and attempt to opti-
mize the ability to more thoroughly
check the reliability of critical appli-
cations written in C.

These rules might prove to be ben-
eficial, especially if the small number
means that developers will actually
adhere to them.

Rule 1: Restrict all code to very simple
control flow constructs—do not use
goto statements, setjmp or longjmp con-
structs, or direct or indirect recursion.
Rationale: Simpler control flow trans-
lates into stronger capabilities for
analysis and often results in improved
code clarity. Banishing recursion is per-
haps the biggest surprise here.
Avoiding recursion results in having an
acyclic function call graph, which code

The Power of 10:
Rules for
Developing Safety-
Critical Code
Gerard J. Holzmann
NASA/JPL Laboratory for Reliable Software

96 Computer

these problems and make it easier to
verify memory use.

Note that the only way to dynami-
cally claim memory in the absence of
memory allocation from the heap is to
use stack memory. In the absence of
recursion, an upper bound on the use
of stack memory can be derived stati-
cally, thus making it possible to prove
that an application will always live
within its resource bounds.

Rule 4: No function should be longer
than what can be printed on a single
sheet of paper in a standard format
with one line per statement and one
line per declaration. Typically, this
means no more than about 60 lines of
code per function.
Rationale: Each function should be a
logical unit in the code that is under-
standable and verifiable as a unit. It is
much harder to understand a logical
unit that spans multiple pages.
Excessively long functions are often a
sign of poorly structured code.

Rule 5: The code’s assertion density
should average to minimally two asser-
tions per function. Assertions must be
used to check for anomalous condi-
tions that should never happen in real-
life executions. Assertions must be
side-effect free and should be defined
as Boolean tests. When an assertion
fails, an explicit recovery action must
be taken such as returning an error
condition to the caller of the function
that executes the failing assertion. Any
assertion for which a static checking
tool can prove that it can never fail or
never hold violates this rule.
Rationale: Statistics for industrial cod-
ing efforts indicate that unit tests often
find at least one defect per 10 to 100
lines of written code. The odds of inter-

analyzers can exploit to prove limits
on stack use and boundedness of exe-
cutions. Note that this rule does not
require that all functions have a single
point of return, although this often
also simplifies control flow. In some
cases, though, an early error return is
the simpler solution.

Rule 2: Give all loops a fixed upper
bound. It must be trivially possible for
a checking tool to prove statically that
the loop cannot exceed a preset upper
bound on the number of iterations. If a
tool cannot prove the loop bound sta-
tically, the rule is considered violated.
Rationale: The absence of recursion
and the presence of loop bounds pre-
vents runaway code. This rule does
not, of course, apply to iterations that
are meant to be nonterminating—for
example, in a process scheduler. In
those special cases, the reverse rule is
applied: It should be possible for a
checking tool to prove statically that
the iteration cannot terminate.

One way to comply with this rule is
to add an explicit upper bound to all
loops that have a variable number of
iterations—for example, code that tra-
verses a linked list. When the loop
exceeds the upper bound, it must trig-
ger an assertion failure, and the func-
tion containing the failing iteration
should return an error.

Rule 3: Do not use dynamic memory
allocation after initialization.
Rationale: This rule appears in most
coding guidelines for safety-critical
software. The reason is simple:
Memory allocators, such as malloc,
and garbage collectors often have
unpredictable behavior that can sig-
nificantly impact performance.

A notable class of coding errors also
stems from the mishandling of mem-
ory allocation and free routines: for-
getting to free memory or continuing
to use memory after it was freed,
attempting to allocate more memory
than physically available, overstep-
ping boundaries on allocated memory,
and so on. Forcing all applications to
live within a fixed, preallocated area
of memory can eliminate many of

cepting defects increase significantly
with increasing assertion density. Using
assertions is often recommended as
part of a strong defensive coding strat-
egy. Developers can use assertions to
verify pre- and postconditions of func-
tions, parameter values, return values
of functions, and loop invariants.
Because the proposed assertions are
side-effect free, they can be selectively
disabled after testing in performance-
critical code.

Rule 6: Declare all data objects at the
smallest possible level of scope.
Rationale: This rule supports a basic
principle of data hiding. Clearly, if an
object is not in scope, other modules
cannot reference or corrupt its value.
Similarly, if a tester must diagnose an
object’s erroneous value, the fewer the
number of statements where the value
could have been assigned, the easier it
is to diagnose the problem. The rule
also discourages the reuse of variables
for multiple, incompatible purposes,
which can complicate fault diagnosis.

Rule 7: Each calling function must
check the return value of nonvoid
functions, and each called function
must check the validity of all parame-
ters provided by the caller.
Rationale: This is possibly the most
frequently violated rule, and therefore
it is somewhat more suspect for inclu-
sion as a general rule. In its strictest
form, this rule means that even the
return value of printf statements and
file close statements must be checked.
Yet, if the response to an error would
be no different than the response to
success, there is little point in explic-
itly checking a return value. This is
often the case with calls to printf and
close. In cases like these, explicitly
casting the function return value to
(void) can be acceptable, thereby indi-
cating that the programmer explicitly
and not accidentally decided to ignore
a return value.

In more dubious cases, a comment
should be offered to explain why a
return value can be considered irrele-
vant. In most cases, though, a func-
tion’s return value should not be

S O F T W A R E T E C H N O L O G I E S

Following a small set
of rules can achieve
measurable effects

on software reliability
and verifiability.

ignored, especially if the function
should propagate an error return
value up the function call chain.

Rule 8: The use of the preprocessor
must be limited to the inclusion of
header files and simple macro defini-
tions. Token pasting, variable argument
lists (ellipses), and recursive macro calls
are not allowed. All macros must
expand into complete syntactic units.
The use of conditional compilation
directives must be kept to a minimum.
Rationale: The C preprocessor is a
powerful obfuscation tool that can
destroy code clarity and befuddle
many text-based checkers. The effect
of constructs in unrestricted pre-
processor code can be extremely hard
to decipher, even with a formal lan-
guage definition. In a new imple-
mentation of the C preprocessor,
developers often must resort to using
earlier implementations to interpret
complex defining language in the C
standard.

The rationale for the caution against
conditional compilation is equally
important. With just 10 conditional
compilation directives, there could be
up to 210 possible versions of the code,
each of which would have to be
tested—causing a huge increase in the
required test effort. The use of condi-
tional compilation cannot always be
avoided, but even in large software
development efforts there is rarely jus-
tification for more than one or two
such directives, beyond the standard
boilerplate that avoids multiple inclu-
sions of the same header file. A tool-
based checker should flag each use and
each use should be justified in the code.

Rule 9: The use of pointers must be
restricted. Specifically, no more than
one level of dereferencing should be
used. Pointer dereference operations
may not be hidden in macro defini-
tions or inside typedef declarations.
Function pointers are not permitted.
Rationale: Pointers are easily misused,
even by experienced programmers.
They can make it hard to follow or
analyze the flow of data in a program,
especially by tool-based analyzers.

Similarly, function pointers should be
used only if there is a very strong jus-
tification for doing so because they can
seriously restrict the types of auto-
mated checks that code checkers can
perform. For example, if function
pointers are used, it can become
impossible for a tool to prove the
absence of recursion, requiring alter-
nate guarantees to make up for this
loss in checking power.

Rule 10: All code must be compiled,
from the first day of development,
with all compiler warnings enabled at
the most pedantic setting available. All
code must compile without warnings.
All code must also be checked daily
with at least one, but preferably more
than one, strong static source code
analyzer and should pass all analyses
with zero warnings.
Rationale: There are several extremely
effective static source code analyzers
on the market today, and quite a few
freeware tools as well. There simply is
no excuse for any software develop-
ment effort not to use this readily
available technology. It should be con-
sidered routine practice, even for non-
critical code development.

The rule of zero warnings applies
even when the compiler or the static
analyzer gives an erroneous warning:
If the compiler or analyzer gets con-
fused, the code causing the confusion
should be rewritten. Many developers
have been caught in the assumption
that a warning was surely invalid, only
to realize much later that the message
was in fact valid for less obvious rea-
sons. Static analyzers have a somewhat
bad reputation due to early versions
that produced mostly invalid mes-
sages, but this is no longer the case.
The best static analyzers today are fast,
and they produce accurate messages.
Their use should not be negotiable on
any serious software project.

FOLLOWING THE RULES
The first few rules from this set

guarantee the creation of a clear and
transparent control flow structure that
is easier to build, test, and analyze.
The absence of dynamic memory allo-

cation, stipulated by the third rule,
eliminates a class of problems related
to the allocation and freeing of mem-
ory, the use of stray pointers, and so
on. The next few rules are fairly
broadly accepted as standards for
good coding style. Other rules secure
some of the benefits of stronger coding
styles that have been advanced for
safety-critical systems such as the
“design by contract” discipline.

D evelopers are currently using this
rule set experimentally at JPL to
write mission-critical software,

with encouraging results. After over-
coming a healthy initial reluctance to
live within such strict confines, devel-
opers often find that compliance with
the rules does tend to benefit code
safety. The rules lessen the burden on
developers and testers to use other
means to establish key properties of
code such as termination or bounded-
ness and safe use of memory and stack.

If these rules seem draconian at first,
bear in mind that they are meant to
make it possible to check safety-criti-
cal code where human lives can very
literally depend on its correctness. The
rules are like the seat belts in a car:
Initially, using them is perhaps a little
uncomfortable, but after a while, it
becomes second nature, and not using
them is unimaginable. ■

The research described in this paper
was carried out at the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract with
NASA.

Gerard J. Holzmann is a principal com-
puter scientist at NASA’s Jet Propulsion
Laboratories, where he leads the Labo-
ratory for Reliable Software. Contact
him at gholzmann@acm.org.

June 2006 97

Editor: Michael G. Hinchey, NASA Soft-
ware Engineering Laboratory at NASA
Goddard Space Flight Center and Loyola
College in Maryland;
michael.g.hinchey@nasa.gov

